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ABSTRACT 

An ultra-reliable navigation receiver is an absolute necessity for the standardisation of modern

cars, including the emerging driverless control. The receivers require an uncompromised level

of integrity. The internal consistency of available signals from GNSS, pseudolites, beacons,

radars, lidars, sonars, gyros, odometers, INS units, as well as all supporting data, is evaluated

in a collective fashion. The Fast Kalman Filtering (FKF) method extends the Helmert-Wolf

blocking (HWb) from Geodesy to precision navigation and solves in real-time the trickiest

problem of  calculating  the  Minimum Norm Quadratic  Unbiased  Estimates  (MINQUE) of

signal errors for the needs of safe driving. This patented FKF method makes full advantage of

all possible combinations of the different signals, even in a numerically exploitable manner.

Fully automated driving can then be made safe by using all available signals at reasonably

restricted  cruising  speeds.  This  reported  intelligent  determination  of  the  true  precision  of

navigation makes room for smooth transport.
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INTRODUCTION

The  Receiver  Autonomous  Integrity Monitoring  (RAIM) has  been used for  safety-critical

GNSS navigation. The Fault Detection and Exclusion (FDE) enabled reliable operation even

in the presence of a signal failure. The differences between the expected and observed signal

values are divided by their normal variation. These ratios are compared with a threshold value

for a small probability of false alarms. The Best possible Linear Unbiased Estimation (BLUE)

of the expected signal values requires extremely fast computing. The  Real-Time Kinematic

(RTK)  and  Virtual  Reference  Station  (VRS)  land  surveying  also  need  the  best  possible

accuracy. These precision techniques exploit the fastest sparse-matrix method known as the

Helmert-Wolf  blocking  (HWb).  However, the  most  reliable  estimates  of  these  attained
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accuracies can only be calculated in late processing. This paper discloses the patented FKF

method for making the precise computations operationally possible even in real-time so that

the true accuracy of each signal is used for the RAIM , FDE and APME processing.

FAST KALMAN FILTERING (FKF)

Helmert-Wolf blocking (HWb)   

The linearized joint regression equation system (1) of the signal data from all receivers and/or

observing instruments can be written out in the Canonical Block-Angular (CBA) form as

outlined first by F. R. Helmert in 1880:

i.e.                     (1)

      y    =                  H                      s      +   e

where vectors y = [y1', y2',…, yK', yK+1']',  s = [b1', b2' ,…, bK' , c']' and  e = [e1', e2',…, eK', eK+1']'

represent the measurements y1, y2,…, yK  of n different signals for K consecutive locations and

their a priori calibration data c, the unknown states b1, b2,…, bK for each of the K consecutive

locations and the m unknown common calibration parameters c and the error vectors e1, e2,…,

eK of the signals and the error vector eC of the a priori calibration data, respectively, during a

sampling period t  (t = 1, 2,...)  from all available data blocks k (k = 1, 2,..., K) so that:

yk = vector of n signals 

c  =  yK+1   =  vector of the a priori values of the m common calibration parameters

Xk = Jacobian matrix for the separate state parameters bk

Gk = Jacobian matrix for the m common calibration parameters c

GK+1  = I = identity matrix 

bk = vector of the separate state parameters  

c   = vector of the m common calibration parameters 

ek = vector of the errors of the n signals  yk

eC = eK+1   = vector of the errors of the a priori values of the m calibration parameters.

The state parameters b1, b2,…, bK are estimated simultaneously for each data block k. The un-

known calibration parameters are more or less common to several data blocks k (k = 1, 2,...,

K) and are denoted here by vector  c,  as they are typically slow-varying or almost constant.
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Matrix H is typically an extremely huge Jacobian matrix, though it can be written out in the

Canonical Block-Angular (CBA) form of equation (1) where its submatrices  X1,  X2,…,  XK

and G1, G2,…, GK, GK+1  are moderately sized Jacobians of the state and of the calibration pa-

rameters. Wolf's formulas for computing all these state and calibration parameters are as fol-

lows: 

bk = (Xk' Xk )-1Xk' (yk - Gkc)   for  k = 1, 2,..., K; 

and,            (2)

c  = (∑Gk' Rk Gk)-1∑Gk' Rk yk

where both indexes k of the two summations ∑ run over K+1 blocks;  and,

where Rk    =  I – Xk  ( Xk' Xk )-1Xk'   =  residual operator for data block k;  and, 

RK+1 =  I  =  “residual operator” for the a priori calibration data yK+1;  

GK+1 =  I  =  “Jacobian matrix” for the a priori calibration data yK+1;

The added value of K+1 for the index k above extends conventional Wolf's formulas (2) into a

large optimal Kalman filter as disclosed in the FKF patent description. However, the absolute-

ly Best Linear Unbiased Estimates (BLUE) of the state and the m calibration parameters are

obtained only if all covariance matrices  Cov(ek) = E(ek ek') of the error vectors e1, e2,…, eK,

eK+1  are initially transformed into identity matrices in such a way that also E(ek1 ek2') = 0 for

all indexes k1   k2. The true error covariance matrix of all the estimated parameters  s  will

thereafter take the following most simple and also numerically exploitable form:

Cov ( s – E(s)) = E [ s – E(s)] [ s – E(s)]'  =                                    (3)

where S  =  (∑ Gk' Rk Gk)-1   the summation k runs over data blocks k=1, 2, … K, K+1; and,

Ck =  (Xk' Xk)-1      for   k=1, 2, … K,  

Dk =  (Xk' Xk)-1X k' Gk       for   k=1, 2, … K.

The required normalization of the error vectors e, e2,…, eK , eK+1 of the n signals and of the m

calibration  parameters has to be  made  by suitably transforming the measurement equations

(1).  Multivariate  statistical  methods such as  a  generalized Canonical  Correlation  Analysis

(gCCA) may also be needed for the elimination of an unwanted heteroscedasticity from the

error variances. However, so far it has been an overly difficult task to even estimate the error

covariance matrix Cov(e) = E(e e') itself, not to mention its real-time computation for each

sampling period t  (t = 1, 2,...)  for operational purposes.
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Estimating the true Precision

C. R. Rao’s  (1972 and 1975) Minimum Norm Quadratic Unbiased Estimation (MINQUE)

theory provides the only practical approach for an efficient estimation of the error covariance

matrix Cov(e) = E(e e') of the various signals and their calibration data. However, the reliable

mathematical solution calls for overwhelmingly large matrix inversions. No existing Floating-

Point Unit (FPU) can deal with them due to short mantissas. Susan D. Horn, Roger A. Horn

and David B. Duncan developed an Almost Unbiased Estimation (AUE, 1975) method from

MINQUE though it is not always sufficient. Fortunately, the patented FKF method using the

semi-analytic sparse-matrix techniques of HWb can usually solve these problems with many

operational applications of navigation, mobile positioning, probe or vehicle tracking as well

as Astro- and Geophysics. 

Vector s of the n+m error variances of all the signal and calibration input data can now be

estimated  according  to  Rao’s  MINQUE  theory  –  under  an  assumption  of  the  so-called

translation invariance  –  by employing the following simple-looking formula:

s =[ s1
2, s2

2,..., sN
2]' = F-1 q      (4)

where s = vector of N unknown error variances  

N = n+m  =  total number of the n different signals and the m calibration inputs

q = vector of the N sums of squared computed residuals e = [e1', e2',…, eK', eK+1']'

F = NxN square matrix. 

The residuals computed from the vector y = [y1', y2',…, yK', yK+1']' are called the innovation

sequence of Kalman filtering. The hardest task here is to compute the matrix F in real-time.

Quadratic estimators like these error variances may, in principle, obtain negative values if

strictly unbiased. Good estimates may also be obtained using an AUE approximation of the

matrix F, and the AUE variances always turn out positive. These MINQUEs can be computed

operationally by applying the FKF method as follows: 

q  = [ y'RT1 y, y'RT2 y, y'RT3 y,..., y'RTN y ]'       (5)

F  = matrix { trace (RTi RTj )}   wherein   i = 1, 2, 3,... , N   and    j = 1, 2, 3,... , N

R  =  I  -  H  Cov(s – E(s))  H'     and

Ti  = gigantic sparse-matrix (i = 1, 2, 3,... , N).

The sparse matrix Ti is diagonal for a typical navigation application. Its scalar elements are

Kronecker's deltas that indicate which data from one of the N different signals are selected  

e.g. Ti = diag{ diag(di,1, di,2,..., di,h1), diag(di,1, di,2,..., di,h2),..., diag(di,1 , di,2 ,,..., di,hK+1) } 

where  di,h = 1 if the place h in subdiagonal k (k=1,2,..., K+1) is entitled to the input data from

the signal i; otherwise  di,h =0. Here we will have at least n*K+m such diagonal elements.
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The CBA equations (1) should be normalized again and again using the improving new error

variance estimates as follows:

Cov(e) = ∑ si
2 Ti  where the summation index i runs from 1 to N.       (6)

This kind of accuracy estimation does not, in the long run, depend essentially on the given a

priori values as long as the FKF process is optimal in all other respects.  Equations (3) - (6)

will then provide objective accuracy estimates as they are derived from the real-time integrity

of the entire system. In the trivial case of only one dimension, these formulas will reduce to a

simple calculation of the error variance of a mean value. 

CONCLUDING REMARKS

The theory of optimal Kalman filtering provides the only mathematically correct means for

repeatedly updating   receiver  positions,  instrumental  calibration  drifts,  system model  and

environment  parameters  in  the  most  stable  way.  Therefore,  the  FKF  processing  method

exploits  here large moving data  windows which can be kept  sufficiently long in  order to

satisfy  Kalman's  observability  and  controlabilty  conditions  also  for  all  those  calibration

parameters that are involved in safety-critical navigation. The only straightforward way of

controlling validity of these two most important conditions is to monitor the true accuracies

by measuring them continuously in real-time as described above. However, no conventional

optimal  Kalman  filter  is  able  to  deal  with  the  emerging  excessive  computational  burden

because its numerical complexity is proportional to the cube of the number of the numerous

input signals and variables. Fortunately, the numerical complexity of FKF is only roughly

proportional to the square. Sophisticated A Posteriori Multipath Estimator (APME) techniques

can  thus  be  developed  for  full  exploitation  of  the  currently  available  numerous  GNSS,

position  location  and  IMU  signals.  Consequently,  the  forthcoming  ultra-reliable  hybrid

navigation receivers will improve both cruise controlling and high-precision piloting of all

sorts of vehicles. Simulations demonstrate how combinations of many new data sources helps

to improve navigation accuracy for more intelligent and safer transports. 
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