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METHOD FOR ADAPTIVE KALMAN FILTERING
IN DYNAMEIC SYSTEMS

Technical Ficld

This invention relates generally to all practical applications of
Kalman filtering and more particularly to controlling dynamic systems
with a need for fast and reliable adaptation to circumstances.

Background Art

Prior to explaining the invention, it is helpful to understand first
the prior art of conventional Xalman recursions as well as the Fast Kalman
Filtering (FKF) method for both calibrating a sensor system PCT/FIS0/00122
(WO 90/13794) and controlling a large  dynamic system PCT/FI93/00192
(WO 93/22625).

The underlying Markov (finite memory) process is described by the
equations from (1) to (3). The first equation tells how a measurement
, at time point t, (t=0,1,2..).
This is the linearized Measurement (or observation) equation:

Yo = Hy s, + ¢ @
Matrix H, is the design (Jacobian) matrix that stems from the partial
derivatives of actual physical dependencies. The second equation describes
the time evolution of the overall system and it is known as the linearized

vector  y, depends on a sfate vector s

System (or state) equation:

s, = A, s ¢t Bow , +a )
Matrix At is the state transition (Jacobian) matrix and Bt is the control
gain (Jacobian) matrix. Equation (2) tells how present state s of the
overall system develops from previous state s, ;, control/external forcing
u,_; and random error a  effects. When measurement errors e, and system

errors a, are neither auto- (i.e. white noise) nor cross-correlated and
are given by the following covariance matrices:
Q, = Coviay = E(@@a,)
and 3
R, = Cov(e)) = E(ee’
AMENDED SHEET t ) (e,
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then the famous Kalmarn forward recuris'ion formulae from (4) to (6) give us
Best Linear Unbiased Estimate (BLUE) s, of present state s, as follows:

A ~

¢ = ApSpq * B weg F Kt{yt_Ht(At Sei + By “t-l)} @)
and the covariance matrix of its estimation errors as follows;
§t=Cov(§t)=E{(§t-st)(§t-st)’}=Ati5t_1A;+Qt-Kth(At§t_1A;+Qt) )
where the Kolman goin mairix K, is defined by
K = (Atf’t-lAE + QK {Ht(Atf’ r1Ar T QYH + Rt}-l ©)

This recursive linear solution is (locally) optimal. The stability of
the Kalman Filter (KF) requires that the observability and controlability
conditions must also be satisfied (Kalman, 1960). However, equation (6)
too often requires an overly large matrix to be inverted. Number n of the
rows (and columns) of the matrix is as large as there are elements in
measurement vector y.. A large n is needed for making the observability
and controlability conditions satisfied. This is the problem sorted out by
the discoveries reported here and in PCT/FI90/00122 and PCT/FI93/00192.

The following modified form of the State equation has been introduced

At Siq1 Tt Bt u = 1 s, + At(st-l' st—l) - a )]

and combined with the Measurement equation (1) in order to obtain the
so-called Augmented Model:

Yy €
AR IR ®)
A8y 1788
i.e. z = + 1,

H
A = S

A1 TBE I

Zt 8¢
The state parameters can be estimated by using the well-known solution of
a Regression Analysis problem as follows:
U SN P |
s, = LNV Z) LV 'z, %)

AMENDED SHEET
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The result is algebraically equivalent to use of the Kalman recursions but
not numerically (see e.g. Harvey, 1981: "Time Series Models”, Philip Allan
Publishers Ltd, Oxford, UK, pp. 101-119). The dimension of the matrix to
be inverted in equation (9) is now the number (=m) of elements in state
vector s. Harvey’s approach is fundamental to all different variations

t
of the Fast Kalman Filtering (FKF) method.

An initiglization or temporary training of any large Kalman Filter
(KF), in order to make the observability condition satisfied, can be done
by Lange’s High-pass Filter (Lange, 1988). It exploits an analytical
sparse-matrix inversion formula for solving regression models with the
following so-called Canonical Block-angular matrix structure:

11=* Gil1Pa] *[er

¥2 X . G ) (10)
: o 2] E:

Yk XgOglle K

This is the matrix representation of the Measurement equation of e.g. an
entire windfinding intercomparison experiment. The vectors bl’b2”“’bK
typically refer to consecutive position coordinates e.g. of a weather
balloon but may also contain those calibration parameters that have a
significant time or space variation. The vector ¢ refers to the other
calibration parameters that are constant over the sampling period.

For all large multiple sensor systems their design matrices H, are
sparse. Thus, one can do in one way or another the same sort of

b 1 Y1 %1 Gia
Partitioning: s, = b ¥ = t,2 Ht= t.2 “t,2
HESA ¥ &
t tK t,K "t.K
(1
Aq 1
A= . AK and, B = . BK
A B
© o

where ¢, typically represents calibration parameters at time t
bt,k all other state parameters in the time and/or space volume
A state transition matrix (bock-diagonal) at time t
B matrix (bock-diagonal) for state-independent effects u, at time t.
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If the partitioning is not obvious ome may try to do it automatically by
using a specific algorithm that converts every sparse linear system into
the Canonical Block-angular form (Weil and Ketter, 1971: "Rearranging
Matrices to Block-angular Form for Decomposition (and other) Algorithms”,
Management Sciemce, Vol, 18, No. 1, Semptember 1971, pages 98-107). The
covariance matrix of random errors e, may, however, loose something of its
original and simple diagonality.

Consequenily, gigantic Regression Analysis problems were faced as follows:

Augmented model for a space volume case: e.g. for the data of a balloon
tracking experiment with K consecutive balloon positions:

X T, 1 e ;Gt,f w1l [ . €.
APy, 1 By 11T D |+|A 1Py, 1Py, 8y
. Yi,2 Xy 2 iGy,2 . : b‘:,z
A,b +Bau I : Aglb 3 b, ; S)a
27t-1,2 2 bM,z H : i t,K 2%-1,2771-1, 2 "z.z
- [ Ct Ep—— .
~ Yk Xk Gk i b‘x,x )
Ayb +Bou S b )R
k%1 KPR e K1,k 01, 0%,
4¢t-1 'H;c"ct_1 j] R 4t S :""ct

Augmented Model for a moving fime volume: (e.g. for "whitening” an observed
“innovations” sequence of residuals € for a moving sample of length L):

~ T 17 Htg ;Ft 1[8e . et }
Asg y¥Bu, 4 |=| 1 I LS B L T S L

RS My iFra : - €1
As, ,+Bu, 4 i 1 N L TS T T D Y|
——— e — Ct §

~ Yt-L41 Hip+nFeLat A FteL+l
As, L +*Bu, ? P A8y -8y 1) - 8¢L+)
_“’cm"'n“c vl | IR LA(ct-l'ct-l) - act

SUBSTITUTE SHEET (Rule 26)
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Please note that the latter matrix equation has a “nested” Block-Angular
structure. There are two types of “calibration” parameters ¢, and C. The
first set of these parameters, ¢, can vary from one time to another. The
second type, Ct’ of these parameters have constant values (approximately
at least) over long moving time windows of length L. The latier ones, Ct,
make the Kalman filteting process an adaptive onme. The solving of the
latter parameters with the conventional Kalman recursions from @) to (6)
cavses an observability problem as for computational reasoms lengih L must
be short. But with the FKF formulae of PCT/FI90/00122, the sample size can

be so large that no initialization (or training) may be needed at all.

Prior to explaining the method of PCT/FI93/00192, it will be helpful
to first understand some prior art of the Kalman Filtering (KF) theory
exploited in experimental Numerical Weather Prediction (NWP) systems. As
previously, they also make use of equation (1):

Measurement Equation: Y, = I-It s, + e ...(linearized regression)

where state vector 5, describes the state of the atmosphere at time t.
Now, s, usually represents all gridpoint values of atmospheric variables
e.g. the geopotential heights (actually, their departure values from the
actual values estimated by some means) of different pressure levels.

The dynamics of the atmosphere is governed by a well-known set of
partial differential equations ("primitive” equations). By wusing e.g. the
tangent lincar approximation of the NWP model the following expression of
equation (2) is obtained for the time evolution of state parameters s,
(actvally, their departure values from a "trajectory” in the space of

Statc parameters generated with the nonlinear NWP model) at a time step:

State Equation: S5 =As_ +Bu_, +a  .(the discretized

dyn-stoch.mode!)

The four-dimensional data assimilation results (gt) and the NWP forecasts
(gt), respectively, are obtained from the Kalman Filter system as follows:

t

~ o~ ~
s, = st+Kt(yt'Ht st)

~ ~ (12
s,=As_;+Bu,
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where P o= Cov(3) = A Cov(gt_l) A’ + Q, ...(prediction accuracy)

Qt = Cov(at) = E a, a,; ...(system noise)
Rt = Cov(et) =Ee e; ...(measurement noise)

and the crucial Updating computations are performed with the following
Kalman Recursion:

—_ L) 3 '] 2 .
Kt =P Ht (Ht Pt Ht + Rt) ..(Kalman Gain matrix)
Cov(st) = Pt - Kt Ht Pt ..(estimation accuracy).

The matrix inversion needed here for the computation of the Kalman Gain
matrix is overwhelmingly difficolt to compute for a real NWP system
because the data assimilation system must be be able to digest several
million data elements at a time. Dr. T. Gal-Chen reported on this problem
in 1988 as follows: "There is hope that the developments of massively
parallel swpercomputers (e.g., 1000 desktop CRAYs working in tandem) could
tesult in algorithms much closer to optimal...”, see “Report of the
Critical Review Panel - Lower Tropospheric Profiling Symposium: Needs and
Technologies”, Bulletin of the American Meteorological Society, Vol. 71,
No. 5, May 1990, page 684.

The method of PCT/FI93/00192 exploits the Augmented Model approach
from equation (8):
Yy H, ¢

t
S = St -+ ~
A:zt_1 +But_1 1 A(st-l'st- 1)—at
ie. % = Zt 5 + g

The following two sets of equations are obtained for Updating purposes:

gt - (z;v;lzt)‘lziv;lzt ...(optimal estimation,
1 by Gauss ~- Markov)
_ ) -1 -1 * -1 -1 o
—{I-Ith Ht+Pt} @Ry + P §) 3)
or, = ';t +K @, -5 %’t) ...(alternatively)
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7
and,
Cov(s,) = BG,s)5s) = zvizy? a4
= {H{ REIH,( + P;I ! ...(estimation accuracy)
where,
§,=A ;t-l +Bu, ...(NWP “forecasting”)
P, = Cov(¥) = A Cov(s,) A’ + Q (15)

but instead of

- , -1
K, =P H # P H +R)

...(Kalman Gain matrix)

the FKF method of PCT/FI93/00192 takes

- ” » p-l
Kt = Cov(st) Ht Rt (16)

The Augmented Model approach is swperior to the wuse of the
conventional Kalman recursions for a large vector of input data Yt because
the computation of tlm Kalman Gain matrix K, requires the hage matrix
inversion when Cov(st) is unknown. Both methods are algebraically and
statistically equivalent but certainly not mumericaily.

However, the Augmented Model formulac are still too difficnlt to be
handled numerically. This is, firstly, because state vector 8¢ consists a
large amount (=m) of gridpoint data for a realistic represemtation of the
atmosphere. Secondly, there are many other state parameters that must be
included in the state vector for a realistic NWP system. These are first
of all related to systematic (calibration) errors of observing systems as
well as to the so-called physical parameterization schemes of small scale

atmospheric processes.

The calibration problems are overcome im PCT/FI93/00192 by using the
method of decoupling states. It is done by performing the following
Partitioning:
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where

g
Vi1 X1 X
¥~ yt 2} Hs= t,2
t.K
and
A1 ;
A =[, and, B, =|y
t :‘}t,K v Bk
t,c t

<, typically represents “calibration” parameters at time t

PCT/FI96/00621
G
11
G2
LK Gt,K
a7

bt Kk values of atmespheric parameters at gridpoint k (k=1,...K}

A state transition matrix at time t (submatrices Al"
B control gain matrix (submatrices B],...

rApA)

,BK,B c)

Consequently, the following gigantic Regression Analysis problem was faced:

~ Y,
Apse g tByw
“ T ,2
Ays 1 +Byu,

1,1
I H
X
I

.Gy 1]

G 2
X kG
3

b
b 5

t,1

I |

Ap(8e18e.1)8p,

s

~ %t,2

A,{s, -5, ;)-8
23V1-1"1-1 bt,g

~ %K

A (s, -5, {)-8
K*t-17"t-1 bt,{(

A6 (5e-175¢-1) e,

The Fast Kalman Fiiter (FKF) formulae for the recursion step at any
time point t were as follows:

by~ (X

A

lkXt k} X kV 1k VG kct)

< {EG,thk tk}

-1

K

z G ARk

for k=1,2.....K

(19)
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where, for ¥=1,2,... K,
-1
_ wv-1 » -l > vl
Rt,k‘ Vt,k{I ) Xt,k{Xt,kVt,kXt,k} t.k t,k}

Cov(e t,k)

Cov{A (5, 15, ()-8 }
k" t-1""t-1 bt,k

Yk
ytk=|: - ’ ]
ApSeq T Brw

X

= |tk
et

G
_ t.k
Gt,k‘ [M_]
and, i.e. for k=0,

R, o= Vi}o

v, ,0= Cov Ac(st-l'st-l)'act}

yt,0= Acst-l +Bc“t-1

Gt,0= I

The data assimilation accuracies were obtained from eguation (20) as
follows:

Cov(s) = Cov(by 1,-...b; g€ 20)
= CI+DISDi DISDi DISD]’( -Dls
DZSD i C2 + D25D2’ D23D1’< -DZS
DKSDi DKSDé CK +DKSDI’( -DKS
-SDi -SDé e -SDI’( S




WO 97/18442 PCT/F196/00621

10
h c =[x vix \! for k=1,2,...K
where k —{ t,k' t.k t,k} OF k=1,25000s

1
_ > -1 > -1 _
D, = {Xt’kV ’kXt’k} X; VLG, for k=12,..K

t
X ., -1
S = {kﬁ OGt,th,th,k}

Kalman Filter (KF) studies have also been reported e.g. by Stephen E.
Cohn and David F. Parrish (1991): “"The Behavior of Forecast Error
Covariances for a Kalman Filter in Two Dimensions”, Monthly Weather Review
of the American Meteorological Society, Vol. 119, pp. 1757-1785. However,
the ideal Kalman Filter systems described in all such reports is still out
of reach for Four Dimensions (i.e. space and time). A reliable estimation
and iaversion of the error covariance matrix of the state parameters is
required as Dr. Heikki Jarvinen of the European Centre for Medium-range
Weather Forecasts (ECMWF) states: “In meteorology, the dimension (=m) of
the state parameter vector s, may be 100,000 - 10,000,000. This makes it
impossible in practice to exactly handle the error covariance matrix.”,
see "Meteorological Data Assimilation as a Variational Problem”, Report
No. 43 (1995), Department of Meteorology, University of Helsinki, page 10.
Dr. Adrian Simmons of ECMWF confirmes that “the basic approach of Kalman
Filtering is well established theoretically, but the computational
requirement renders a full implementation intractable.”, see ECMWF
Newsletier Number 69 (Spring 1995), page 12.

The Fast Kalman Filtering (FKF) formulas known from PCT/FI90/00122
and PCT/FI93/00192 make use of the assumption that error covariance matrix
v, in equations (9) and (13), respectively, is block-diagonal. Please see
the FKF formula (19) where these diagonal blocks are writien out as:

Cov(et k)

Vt,k=

Cov{A (5, 1-5, 1) }
k'Y7t-17"t-1 bt’k
It is clear especially for the case of adaptive Kalman Filtering (and the

4-dimensional data-assimilation) that the estimates of consecutive state
patameter vectors S;.17 S.2> Sy.3» --- @T€ CrOSS- and auto-correlated.
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There exists a need for exploiting the principles of the Fast Kailman
Filtering (FKF) method for adaptive Kalman Filtering (AKF) with equal or
better computational speed, reliability, accuracy, and cost benefits than
other Kalman Filtering methods can do. The invented method for an exact
way of handling the error covariances will be disclosed herein.

Summary of the Invention

These needs are substantially met by provision of the adaptive Fast
Kalman Filtering (FKF) method for calibrating/adjwsting various parameters
of the dynamic system in real-time or in near real-time. Both the
measurcment and the system errors are whitened and partially orthogonalized
as described in this specification. The FKF computations are made as close
to the optimal Kalman Filter as mneeded wunder the observability and
controllability conditions. The estimated error variances and covariances
provide a tool for monitoring the filter stability.

Best Mode for Carrying out the Invention

We rewrite the linearized Measurement (or observation) equation:
v, =H s +F, C, + ¢, 1)

where e, now represents “white” mnoise that correlates with neither e _;,
€pseer MOT S 1y S 5y TOT B, By, 8 o,.... Matrix H is still the
same design matrix as before that stemms from the partial derivatives of
the physical dependencies between measurements ¥ and state parameters s_,
please see |Partitioning (11) on page 3 (the old block-diagonality
assumption for matrices A and B is no longer valid). Matrix F¥ describes
how the systematic errors of the measurements depend on the calibration or
"calibration type” parameters, vector Ct’ that are constants in time or
vary only slowly. The columns of matrices F¥, F¥-1’ F¥_2,... represent
partial  derivatives, wave forms like sinusoids, square waves, “hat”
functions, etc. and empirical orthogonal functions (EOF) depending on what
is known about physical dependencies, regression and autoregression (AR) <
the systematic errors of the measurements. Elements of estimated vector ét
will then determine amplitudes of the “red” mnoise factors. Let us refer to
quite similar Augmented Model for a moving time volume for “whitening”
observed "innovations” sequences of measurements, on the bottom of page 4.
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Similarly, we rewrite the linearized System (or stare) equation:
S, = (A, +dA) s, +B u_ +FC +a (22)

where 8, DmOW represents "white” noise that correlates with neither €
€.1s ©pps- BOL S gy Sy 9s.. DOr B 4, B 4. Matrix A is still
the same state transition matrix that stemms from the partial derivatives
of the physical dependencies between states 5 and previous states 8 1
Matrix Fi describes how the systematic errors of the dymamical model (e.g.
NWP) depend on the calibration or “calibration type” parameters, vector
C,, that are conmstants in time or vary only slowly. The columns of
matrices Ff, Fi_l, F:-Z"" represent partial derivatives, wave forms

like sinusoids, square waves, “hat” functions, etc. and empirical
orthogonal functions (EOF) depending on what is known about physical
dependencies, regression and autorcgression (AR) gf the systematic errors
of the model. Elements of estimated vector C, will then determine

amplitudes of the "red” noise factors.

Matrix dA, tells how systematic statc tramsition errors of the
dypamical (NWP) model depend om prevailing (weather) conditions. If they
are unknown but vary only slowly an adjustment is done by moving averaging
(MA) in conjunction with the FKF method as described next. The impact is
obtained from System equation (22) and is rewritten as follows:

dA; s, =

[sll(mxm),SZI( oSl )] [dall,daﬂ,...,daml,dalz, ...,damm]

=M,

(23)
where M, ; is a matrix composed of m diagonal matrices of size mxm,

815 895 ..o S, ATE the m scalar elements of state vector S._1>

F, is the column vector of all the mxm elements of matrix dAt.

Please note that equation (23) reverses the order of multiplication which
now makes it possible to estimatc elements of matrix dA; as ordinary
regression parameters.
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Consequently, the following gigantic Regression Analysis problem is faced:
Augmented Model for a maoving time volume: (l.e. for whitening innovations
sequences of residuals €, and a, for a moving sample of length L):

R 1 [ B ;Fz 115¢ 2

Asp .y ¥Buy o 15| 2 o Mgl (H|ABsed -
........................... e : !

- Y P . LT
AfgatBuy o | | 1 Fry MeafLrIp (A s ep) Ay
_________________ C e

« Tt-L+1 N ft-L+1
AspLtBug g ﬁfgs.i‘.'.k'f}_tk)__'f,':L,:'.'.!
{Act AL I A€, €, ) -5,

24
Please note that the matrix equation above has a “nested” Block-Angular
structure. There can be three types of differemt “calibration” parameters.
The first type, Cpr is imbedded in the data of each time step t. Two other
lypes are represented by vector C[. The first set of these parameters is
used for the whitening and the partial ortogonalization of the errors of
the measurements and of the system (i.e. for block-diagonalization of the
error covariance matrix), The second set, i.e. T is used for correcting
gross errors im the state transition matrices. The last two sets  of
parameters have more or less constant valucs over the long moving time
window and make the Kalman filtering process an adaptive one,

It should also be noted that martrix M, | canonot take its foll size
(mxm?) as indicated in equation (23). This is because the observability
condition will become unsatisfied as there would too many unknown
quantitics. Thus, matrix M, ; must be effectively "compressed” to represent
only those elements of matrx At which are related to serious state
transition errors. Such transitions are found by e.g. using so-cailed
maximum corrclation methods. In  fact, sporadic and slowly migrating
patterns may develop in the space of state parameter vectors. These are
small-scale phenomena, typically, and they cannot be adequately described
by the state transition matrices derived from the model equations only. In
order to maintain the filter stability, all the estimated elements of
matrix dA, are kept observable in the moving averaging (MA) of measurements
€.g. by monitoring their estimated covariances in equation (20).
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The Fast Kalman Fiiter (FKF) formulae for a time window of length L
at time point t are then as follows:

-1
. -1 -1 5
st-l={X:—IVt-lXt-l} XaVeerG £ for 1=012,...11
A , L., @5
¢ {2 G lRt th l} ‘_:: OGt-lRt-lyt-l

where, for I=0,1,2,...,L-1,

R Vil X, Vi X

V. = Cov(e, ;)

t-1 -
Cov At-l(st-l-l'st-l-l)'at-I}

Yers [ .o ]

App Serr By g

and, i.e. for I=L,
_ -1
Rt-L‘ Vt-L

V1= cov{a &, 1‘°t-1)"ct}

yt-L Acct 1+ Bc .1
Gt-L=

It may sometimes be necessary to Shape Filter some of the error terms
for the sake of optimality. If this is done then the identity (I) matrices
would disappear from the FKF formulas and have to be properly replaced
accordingly.
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The FKF formulas given here and in PCT/FI90/00122 and PCT/FIS3/00192
are based on the assumption that error covariance matrices are block-
diagonal. Attempts to solve all parameters C, with the conventional Kalman
recursions from (4) to (6) doomed to fail due to serious observability and
controlability problems as computational restrictions prohibit window
length L from being taken long emough. Fortunately, by using the FKF
formolas, the time window can be taken so long that am imitialization or
temporal training sequences of the filter may become completely redundant,

Various formulas for fast adaptive Kalman Filtering can derived from
the Normal Eguation system of the gigantic linearized regression equation
(24) by different recursive uses of Frobenius’ formula:

A B! _ [A1+A"BH!CA! -A"'BHY

CD -HICA! H-1
where H = D - CA"1B. The formulas (20) and (25) as well as any other FKF
type of formulas obtained from Frobenius’ formula (26) are pursuant to the
invented method.

(26)

For example, there are effective computational methods for inverting
symmetric band-diagonal matrices. The error covariance matrices of
numerical weather forecasts are typically band-diagonal. We can proceed
directly from equation system (8) without merging state parameters s imto
the observational blocks of the gigantic Regression Analysis problem (18).
Their error covariance matrix can then be inverted as one large block and a
recursive use of Frobenius’ formula leads to FKF formulas similar to
formulas (25).

All the matrices to be inverted for solution of the gigantic
Regression Analysis models are kept small enough by exploiting the reported
semi-analytical computational methods. The preferred embodiment of the
invention is shown in Fig. 1 and will be described below:
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A supernavigator based on a notebook PC that performs the functions
of a Kalman filtering logic wumit (1) through exploiting the generalized
Fast Kalinan Filtering (FKF) method, The overau receiver concept comprises
an integrated semsor, remote sensing, data processing and transmission
system (3) of, say, a national atmospheric/oceanic service and,
optionally, an off-the-shelf GPS receiver. The database unit (2) running
on the notebook PC contains wupdated information on control (4) and
performance aspects of the various subsystems as well as auxiliary
information such as geographical maps. Based uwpon all these inpats, the
logic umit (1) provides real-time 3-ditnensional visualizations (5) on what
is going on by wsing the FKF recursions for equation systemn (24) and on
what will take place in the nearest future by using the predictions from
equations (15). Dependable accuracy information is also provided when the
well-known stability conditions of optimal Kalman filtering are be met by
the observing system (3). These error variances and covariances are
computed by using equations (15} and (20). The centralized data processing
system (3) provides estimates of State Transition Matrix A for each time
step t. These matrices are then adjusted locally (1) to take imto account
all cbserved smafl-scale transitions that occur in the atmospheric/oceanic
environment (see for example Cotton, Thompson & Mielke, 1994; "Real-Time
Mesoscale  Prediction on  Workstations”, Bulletin of the American
Meteorological Society, Vol. 75, Number 3, March 1994, pp. 349-362).

Those skilled in the art will appreciate that many variations could
be practiced with respect to the above described invention without
departing from the spirit of the invention. Therefore, it should be
understood that the scope of the invention should not be considered as
limited to the specific embodiment described, except in so far as the
claims may specifically include such limitations.
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PCT/FI96/00621
AMENDED CLAIM

1. A method for adjusting model and calibration parameters of a sensor

system accompanied with said model of external events by adaptive

Kalman filtering, the sensor output units providing signals in response to

said external evenis and where the series of simultaneously processed

sensor output signal values are long, the method comprising the steps of:

a) providing a data base unit for storing information on:

- a plurality of test point sensor cutput signal values for some of
said sensors and a plurality of values for said external events
corresponding to said test point sensor output signal values, or
simultaneous time series of said output signal values from adjacent
sensors for comparison;

- said sensor output signal values accompanied with values for said
model and calibration parameters and values for said external events
corresponding to a situation; and,

- controls of said sensors and changes in said external events
corresponding to a new situation;

b) providing a logic unit for accessing said sensor signal output
values with said model and calibration parameters, said iogic unit
having a two-way communications link to said data base unit, and
computing initial values for-unknown model and calibration parameters
with accuracy estimates by using Lange's High-pass Filter if required,

¢) providing said sensor output signal values from said sensors, as
available, to said logic unit;

d) providing information on said controls and changes to said data base
unit;

¢) accessing current values of said model and calibration parameters
and elements of a state transition matrix, and computing by using the
Fast Kalman Filter (FKF) formulas obtained from Frobenius' inversion
formula (26) wherein the improvement comprises a diagonalization of
the error covariance matrix to be obtained by applying faciors
F,F or M to Augmented Model (8), in said logic unit,
updates of said model and calibration parameters, values of said
external events and their accuracies corresponding to said new
situation;

f) controlling stability of said Kalman filtering by monitoring said
accuracy estimates, in said logic unit, and by indicating when there is
need for some of the following: more sensor output signal values,
test point data, sensor comparison or system reconfiguration;

g) adjusting those of said model and calibration parameter values for
which stable updates are available.
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